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Density of a gas of spin-polarized fermions in a magnetic field
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For a fermion gas with equally spaced energy levels that is subjected to a magnetic field, the particle density
is calculated. The derivation is based on the path integral approach for identical particles, in combination with
the inversion techniques for the generating function of the static response functions. Explicit results are
presented for the ground state density as a function of the magnetic field with a number of particles ranging
from 1 to 45.
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I. INTRODUCTION

The explosive growth of mesoscopic physics has mad
possible to obtain a tunable number of electrons confine
semiconductor quantum dots@1#. Experiments on vertica
quantum dots indicated that the confinement potential
single quantum dots is well described by a parabolic pot
tial @2#. Although the electronic eigenstates and eigenval
are essentially given by the Fock-Darwin states@3#, detailed
experimental data@4–6# reveal the importance of correlatio
effects on the ground state properties of the electrons
quantum dots. In order to take these correlation effects
account, various approximate theoretical methods@7–9# have
been used, e.g., the eigenstates and eigenvalues of a
monic interaction model including the effects of a magne
field have been studied with operator techniques@10#, and
the harmonic interaction model has been used to explain
cific features in the addition spectrum of a quantum dot i
magnetic field@11#.

The harmonic interaction model is one of the rare e
amples for which the thermodynamical properties are exa
soluble, including the boson or fermion statistics, in the pr
ence of a magnetic field@12#. It can also function as a tria
model for the variational treatment of systems with mo
realistic interactions with the aid of the Jensen-Feynman
equality @13#. An example of this approach can be found
Ref. @14#, where the Jensen-Feynman variational approac
used to describe Bose-Einstein condensation in a gas of87Rb
and in a gas of7Li atoms. The spin statistics of the harmon
interaction model@15# can be treated within the same man
body path integral formalism.

In the present paper, we study the density of harmonic
interacting electrons in a parabolic quantum dot in a m
netic field, taking into account the electron correlation effe
analytically. This analysis is a natural extension of our p
vious investigation of the thermodynamical properties o
confined system of spin-polarized fermions in the prese
of a magnetic field@12#, using a method that combines th
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path integral formalism@16#, the method of symmetrized
density matrices@13#, and inversion techniques for genera
ing functions @17–19#. Instead of using the stochastic a
proach@20# with the Itô condition on the magnetic field@21#
for calculating the path integral forN identical interacting
oscillators in a magnetic field, we relied on a detailed inv
tigation of the classical equations of motion. The quant
mechanical corrections to their classical action are exa
taken into account.

The model system ofN harmonically interacting oscilla-
tors in a magnetic field is described by the Lagrangian~units
with \ andm equal to unity are used throughout this pap!

L5
1

2 (
j 51

N

~ ṙ j
222vcxj ẏ j !2V, ~1!

wherevc is the cyclotron frequency, and where the potent
energyV results from a harmonic confinement potential a
a harmonic two-body interaction,

V5
V2

2 (
j 51

N

r j
26

v2

4 (
j ,l 51

N

~r j2r l !
2. ~2!

The two-body potential might be either attractive or rep
sive depending on the plus sign or the minus sign in
two-body interaction.

As a first step in the calculation of the path integral, w
studied the case ofdistinguishableparticles @12#. Because
the magnetic field affects the equations of motion only in
xy plane perpendicular to the magnetic field, the Lagrang
naturally decouples into two contributionsL5Lxy1Lz ,
where Lxy contains the magnetic field. This allows us
calculate the propagator in thexy plane independently from
the propagator in thez direction. Through a transformation t
the center of mass reference frame, one obtains a setN
three-dimensional oscillators in a magnetic field. The cen
of mass is described by an oscillator with frequencyV. The
remainingN21 oscillators, associated with the internal d
grees of freedom, have a frequency

w5AV26Nv2. ~3!
©2000 The American Physical Society11-1
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Note that the case of a repulsive interaction imposes a
bility constraint on the confinement potential:V has to be
large enough to keep the repelling particles together.
magnetic field does not affect these frequencies in thez di-
rection. But in thexy plane the equations of motion reve
two renormalized frequencies due to the magnetic field,

s5Aw21vL
2 and sc.m.5AV21vL

2, ~4!

wherevL5vc/2 denotes the Larmor frequency. The ind
c.m. refers to the renormalized frequency in the center
mass coordinates. Once the propagator for distinguish
particles is known, it is projected on the antisymmetric re
resentation to obtain thefermionpropagator@12#.

This paper is organized as follows. In Sec. II the on
particle correlation function is calculated for identical ha
monically interacting oscillators in a homogeneous magn
field. In Sec. III special attention is paid to the fermio
ground state density in thexy andxz planes. In Sec. IV some
concluding remarks are given.

II. STATIC RESPONSE PROPERTIES OF THE MODEL
SYSTEM

In the path integral approach to quantum mechanics
expectation value of an expressionA( r̄ ) is given by
01611
a-

e

f
le
-

-

ic

e

^A~ r̄ ,b!& I5

E dr1•••E drNKI~ r̄ ,bu r̄ ,0!A~ r̄ !

E dr1•••E drNKI~ r̄ ,bu r̄ ,0!

, ~5!

wherer̄ is the 3N-dimensional vector containing the coord
natesr1 , . . . ,rN of all the N particles, andKI( r̄ ,bu r̄ 8,0) de-
notes the propagator in the Euclidean timeb51/(kBT), with
kB denoting the Boltzmann constant andT the temperature.
The subscriptI emphasizes that identical particles~fermions
or bosons! are considered. For the probability density and
Fourier transform this gives

n~r !5
1

N K (
l 51

N

d~r2r l !L
I

5E dq

~2p!3
nqe

2 iq"r↔nq

5
1

N (
l 51

N

^eiq"r l& I . ~6!

Substituting the expression for the propagatorKI( r̄ ,bu r̄ ,0),
one obtains the following integral for the Fourier tran
form nq :
le

e

the
nq5
1

NZI~b,N!
E E dRdk

~2p!3
eik"R

KV~ANZ,buANZ,0!KvL ,sc.m.
~ANX,ANY,buANX,ANY,0!

Kw~ANZ,buANZ,0!KvL ,s~ANX,ANY,buANX,ANY,0!

3E dr̄e2 i k̄"r̄(
l

eiq"r l
1

N! (
p

jp)
j 51

N

Kw„~Pz! j ,buzj ,0…KvL ,s„~Px! j ,~Py! j ,buxj ,yj ,0…, ~7!

whereZI(b,N)5*dr̄KI( r̄ ,bu r̄ ,0) is the partition function ofN identical particles,P denotes a permutation of the partic
indices, andj511 for bosons or21 for fermions. The propagatorsKV , Kw , KvL ,sc.m.

, andKvL ,s are known in closed form,

and explicitly calculated in Ref.@12#. In order to obtain tractable expressions fornq , the summation over all possibl
permutations will be rewritten as a sum over all possible cycles.

One-particle expectation values

For the one-point correlation function a factoreiq"r l has to be taken into account in each permutation when applying
cyclic decomposition of the permutations. Indicating the number of cycles of lengthl by M l , the cyclic decomposition for
nq becomes

nq5
1

NZI~b,N!
E E dRdk

~2p!3
eik"R

KV~ANZ,buANZ,0!KvL ,sc.m.
~ANX,ANY,buANX,ANY,0!

Kw~ANZ,buANZ,0!KvL ,s~ANX,ANY,buANX,ANY,0!

3 (
M1, . . . ,MN

(
l

l M l Kl ~k,q!
j (l 21)M l

M l ! l M l
@Kl ~k!#M l 21 )

l 8Þl

j (l 821)M l 8

M l 8! ~ l 8!M l 8
@K l 8~k!#M l 8, ~8!

where
1-2
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Kl ~k,q!5E dr l 11•••E dr1d~r l 112r1!eiq"r1)
j 51

l

KvL,s
~xj 11 ,yj 11 ,buxj ,yj ,0!Kw~zj 11 ,buzj ,0!e2 ik"r j /N, ~9!

andKl (k,q50)5Kl (k) is the same function as Eq.~17! of Ref. @12# in the calculation of the partition functionZI(b,N). We
point out that the positive integersl andM l ~with 1<l <N) have to satisfy the constraint( l l M l 5N. Taking into account
the semigroup property of the propagatorsKvL ,s(xj 11 ,yj 11 ,buxj ,yj ,0) andKw(zj 11 ,buzj ,0), one recognizes inKl (k,q) the

partition function~over a time intervall b) of a driven harmonic oscillator in a magnetic field,

Kl ~k,q!5E E E KvL,s
~x,y,l bux,y,0!Kw~z,l buz,0!expS 2E

0

l b

fq~t!r ~t!dt D dxdydz, ~10!

with the driving force

fq~t!5 i
k

N (
j 50

l 21

d~t2 j b!2 iqd~t!. ~11!

This partition function is known in closed form and given by

Kl ~k,q!5
1

2~coshl bs2coshl bvL!
expS fqx ,qy

4s~coshl bs2coshl bvL!
D S 1

2sinh~ l bw/2!
efqzD , ~12!

with

fqx ,qy
5E

0

l bE
0

l b

@ f qx
~t! f qx

~s!1 f qy
~t! f qy

~s!#@coshvL~t2s!sinhs~ l b2ut2su!

1coshvL~ l b2ut2su!sinhsut2su#dsdt1 i E
0

l bE
0

l b

@ f qx
~t! f qy

~s!2 f qx
~s! f qy

~t!#

3@sinhvL~t2s!sinhs~ l b2us2tu!2sinhvL~ l b2us2tu!sinhs~t2s!#dsdt, ~13!

fqz
5

1

2E0

l bE
0

l b f qz
~t! f qz

~s!

2w

cosh~ l b/22ut2suw!

sinhl bw/2
dsdt. ~14!

Substituting the forcefq(t) from Eq. ~11! into the above expressions forfqx ,qy
andfqz

yields

Kl ~k,q!5Kl ~kx ,ky!expS ~kxqx1kyqy!sinhbs

2Ns~coshbs2coshbvL!
2

~qx
21qy

2!sinhl bs

4s~coshl bs2coshl bvL!
D

3Kl ~kz!expS kzqz

2Nw
coth

1

2
bw2

qz
2

4w
coth

1

2
l bwD , ~15!

with

Kl ~kx ,ky!5
1

2~coshl bs2coshl bvL!
expS 2

l ~kx
21ky

2!

4N2s

sinhbs

coshbs2coshbvL
D ,

Kl ~kz!5
1

2~coshl bw21!
expS 2

l kz
2

4N2w
coth

bw

2 D .

The remaining integrations overk andR in nq are Gaussian and easy to perform, eventually leading to

nq5expF2
~qx

21qy
2!

4N S sinhbsc.m.

sc.m.~coshbsc.m.2coshbvL!
2

sinhbs

s~coshbs2coshbvL! D2
qz

2

4N S cothbV/2

V
2

cothbw/2

w D G ñq ,

~16!
016111-3
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with

ñq5
1

NZI~b,N! (
M1, . . . ,MN

F(
l

l M l expS 2
~qx

21qy
2!sinhl bs

4s~coshl bs2coshl bvL!
2

qz
2

4w
coth

1

2
l bwD G

3)
l

j (l 21)M l

M l ! l M l
S 1

4~coshl bs2coshl bvL!sinh 1
2 l bwD M l

. ~17!

The exponential factor innq accounts for the center of mass contribution, and it becomes unity for noninteracting pa
(w5V). The factorñq is the expectation value of( le

iq"r l in the subspace of the relative coordinate system with its co
sponding partition functionZI(b,N).

We now introduce the generating functionG1(b,u,q)5(N50
` @NZI(b,N)ñq#uN for the Fourier transform of the density, a

was done before@17,18# in the absence of a magnetic field,

G1~b,u,q!

5 (
N50

`

(
M1, . . . ,MN

F(
l

l M l expS 2
~qx

21qy
2!sinhl bs

8s sinh~ l b/2!~s1vL!sinh~ l b/2!~s2vL!
2

qz
2

4w
coth

1

2
l bwD G

3)
l

1

M l ! S j (l 21)ul

l S 8sinh~ l b/2!~s1vL!sinh~ l b/2!~s2vL!sinh
1

2
l bwD D M l

~18!

5J I~b,u! (
l 51

` j (l 21)exp$2@~qx
21qy

2!sinhl bs/8s sinh~ l b/2!~s1vL!sinh~ l b/2!~s2vL!#2~qz
2/4w!coth 1

2 l bw%
8 sinh~ l b/2!~s1vL!sinh~ l b/2!~s2vL!sinh 1

2 l bw
ul ,

~19!

whereJ I(b,u)5(N50
` ZI(b,N)uN is the generating function for the partition functionZI(b,N). After straightforward algebra

one is left with

ñq5
1

N (
l 51

N

j (l 21)
ZI~b,N2l !

ZI~b,N!

3
exp$2@~qx

21qy
2!sinhl bs/8s sinh~ l b/2!~s1vL!sinh~ l b/2!~s2vL!#2~qz

2/4w!coth 1
2 l bw%

8 sinh~ l b/2!~s1vL!sinh~ l b/2!~s2vL!sinh 1
2 l bw

. ~20!

It is noted that in the limitq→0 the sum ruleñq5051 is indeed satisfied. The densityn(r ) in real space then becomes

n~r !5E dq

~2p!3
nqe

2 iq"r ~21!

5
1

N (
l 51

N

j (l 21)
ZI~b,N2l !

ZI~b,N!

sBl

p
AwAl

p

exp@2sBl ~x21y2!2wA l z2#

8 sinh~ l b/2!~s1vL!sinh~ l b/2!~s2vL!sinh 1
2 l bw

, ~22!

with

Al 5Fcoth
1

2
l bw1

1

N S w

V
coth

bV

2
2coth

bw

2 D G21

, ~23!

Bl 5F sinhl bs

coshl bs2coshl bvL
1

1

N S s

sc.m.

sinhbsc.m.

coshbsc.m.2coshbvL
2

sinhbs

coshbs2coshbvL
D G21

. ~24!

The sum rule*drn(r )51 for the density is easily verified. In the next subsection the fermion ground state density w
examined, by inverting the defining series for the generating functionG1(b,u,q). Subsequently results will be presented for t
ground state density in thexy plane and in thexz plane.

III. GROUND STATE DENSITY

Because of alternating signs in the recurrence relations for the partition functionsZI(b,N), Eq. ~22! is not appropriate for
numerical purposes, in particular in the low temperature limit. This sign problem can be circumvented by an alte
inversion of the generating functionG1 using contour integration:
016111-4
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ñq5
1

N!

1

NZI~b,N!

]NG1~b,u,q!

]uN U
u50

5
1

2pZI~b,N!

1

NE0

2pG1~b,ueiu,q!

uN
e2 iNudu. ~25!

Substituting Eq.~19! into the above expression yields

ñq5
1

N

J I~b,u!/uN

2pZI~b,N!
e2(kx

2
1ky

2
1kz

2)

3 (
l 51

` E
0

2pJ I~b,ueiu!

J I~b,u!

j (l 21)~Abb1b2ueiu! l exp$2~kx
21ky

2!@b1
l /~ 12b1

l !1b2
l /~ 12b2

l !#%exp@22kz
2bl /~ 12bl )#

~12bl !~12b1
l !~12b2

l !

3e2 iNudu, ~26!

with the shorthand notations

kx
25qx

2/4s, ky
25qy

2/4s, kz
25qz

2/4w, b5e2bw, b15e2b(s1vL), b25e2b(s2vL). ~27!

By expanding the Fourier transform of the densityñq in powers ofb, b1, andb2 one arrives at

ñq5
1

N

J I~b,u!

2pZI~b,N!uN
e2(kx

2
1ky

2
1kz

2) (
m50

`

(
m150

`

(
n150

`

(
m250

`

(
n250

`
~2kx

2!m11m2~2ky
2!n11n2~22kz

2!m

G~m111!G~m211!G~n111!G~n211!G~m11!

3 (
k50

`

(
k150

`

(
k250

` ~m11n111!k1
~m21n211!k2

~m11!k

G~k111!G~k211!G~k11!

3E
0

2pueiubm1k11/2b1
k11m11n111/2b2

k21m21n211/2
CN21~u!2j~ubm1k11/2b1

k11m11n111/2b2
k21m21n211/2

!2CN~u!

122jubm1k11/2b1
k11m11n111/2b2

k21m21n211/2cosu1~ubm1k11/2b1
k11m11n111/2b2

k21m21n211/2
!2

du,

~28!

with (a)p5G(a1p)/G(a) the Pochhammer symbol. The functionCN(u)5e2 iNuJ I(b,ueiu)/J I(b,u) has previously been
obtained@12#. Using Eq.~6!, the density~still at arbitrary temperature! then becomes

n~r !5
1

N

1

E
0

2p

CN~u!du
A s2w

p3A2B
expS 2

s~x21y2!

A
2

wz2

B D

3 (
m50

`

(
m150

`

(
n150

`

(
m250

`

(
n250

`
~21/4A!m11m21n11n2~21/2B!m

G~m111!G~m211!G~n111!G~n211!G~m11!

3 (
k50

`

(
k150

`

(
k250

` ~m11n111!k1
~m21n211!k2

~m11!k

G~k111!G~k211!G~k11!

3 (
q50

m

(
q150

m11m2

(
q250

n11n2 ~24sx2/A!m11m22q1~24sy2/A!n11n22q2~24wz2/B!m2q

@2~m11m2!11#22q1
G~q111!@2~n11n2!11#22q2

G~q211!~2m11!22qG~q11!

3E
0

2pueiubm1k11/2b1
k11m11n111/2b2

k21m21n211/2
CN21~u!2j~ubm1k11/2b1

k11m11n111/2b2
k21m21n211/2

!2CN~u!

122jubm1k11/2b1
k11m11n111/2b2

k21m21n211/2cosu1~ubm1k11/2b1
k11m11n111/2b2

k21m21n211/2
!2

du,

~29!

with

A511
1

N S s

sc.m.

sinhbsc.m.

coshbsc.m.2coshbvL
2

sinhbs

coshbs2coshbvL
D , ~30!

B511
1

N S w

V
coth

bV

2
2coth

bw

2 D . ~31!
016111-5
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The ground state density atT50 is then readily obtained by taking the limitb→`:

nT50~r !5
1

N
A~ss!2qw

p3
exp@2ss~x21y2!2qwz2#

3 (
m50

`

(
m150

`

(
n150

`

(
m250

`

(
n250

`
~2s/4!m11m21n11n2~2q/2!m

G~m111!G~m211!G~n111!G~n211!G~m11!

3 (
k50

`

(
k150

`

(
k250

` ~m11n111!k1
~m21n211!k2

~m11!k

G~k111!G~k211!G~k11!

3 (
q50

m

(
q150

m11m2

(
q250

n11n2 ~24ssx2!m11m22q1~24ssy2!n11n22q2~24qwz2!m2q

@2~m11m2!11#22q1
G~q111!@2~n11n2!11#22q2

G~q211!~2m11!22qG~q11!
,

~32!
al

1,

cit

the
-

e

with

s5
N

N211s/sc.m.
and q5

N

N211w/V
. ~33!

The sum rule*drnT50(r )51 can easily be verified.

A. Density in the xy plane

The ground state surface density n(x,y)
[nT50(x,y,z)/nT50(0,0,z) in the xy plane is cylindrically
symmetric, which means thatn(x50,y) contains all the in-

FIG. 1. Scaled surface densityNn(x50,y)w for V5w in the
plane perpendicular to the magnetic field, as a function of the sc
distancey/y0 ~with y051/Aw; units with \5m51 are used! from
the center of the parabolic confinement potential forN51, . . . ,45
fermions in the limitvL /w→0. The densities corresponding to
3, 6, 10, 15, 21, 28, 36, and 45 fermions~i.e., for closed shell
configurations in the absence of a magnetic field! are indicated by
dashed lines and the corresponding particle number is expli
indicated.
01611
ed

ly

FIG. 2. ~a! Scaled surface densityNn(x50,y)/w for V5w in
the plane perpendicular to the magnetic field, as a function of
scaled distancey/y0 ~with y051/Aw) from the center of the para
bolic confinement potential forN510 fermions and for various
Larmor frequenciesvL /w50.2, 0.6, 1.2, 3.0. The inset shows th
magnetic susceptibility forN510 fermions as a function of the
Larmor frequency.~b! Same as in~a!, but for vL /w50, 0.4, 0.9.
1-6
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formation. Figure 1 showsNn(x50,y)/w for 1–45 electrons
for the noninteracting case (w5V) at zero temperature. Th
factor 1/w makes this expression dimensionless~in the units
with \5m51 used throughout this paper!. The factorN is
introduced for clarity in the figure, in order to avoid to
strongly overlapping curves. The densities forN51, 3, 6,
10, 15, 21, 28, 36, and 45 electrons, i.e., for closed s
configurations, are emphasized by dashed lines. Oscillat
appear in the density profiles, indicating concentric orbit
of increased density around the center of the confinem
potential. The oscillations become more pronounced if
number of particles increases. Previously@22# the effects of
an attractive (w.V) and a repulsive (w,V) two-particle
interaction were studied in the absence of a magnetic fiel
was seen that a repulsive interaction induced an expan
whereas an attractive interaction induced a contraction of
gas of interacting fermions. These effects also appear

FIG. 3. ~a! Scaled surface densityNn(x50,y)/w for V5w as a
function of the scaled distancey/y0 ~with y051/Aw) from the cen-
ter of the parabolic confinement potential forN528 fermions and
for various Larmor frequenciesvL /w50, 1.0, 2.0, 3.0. The inse
shows the magnetic susceptibility forN528 fermions as a function
of vL . ~b! Same as in~a!, but for vL /w50.5, 1.5, 2.5, 3.5.
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nonzero magnetic fields, but for reasons of brevity they
not plotted.

With increasing magnetic field the oscillations in the de
sity gradually become less pronounced and the confinem
is enhanced asvL increases. The density profile chang
whenever the magnetic susceptibility~which is proportional
to ]EG /]vL with EG5(E,EF

E the ground state energy!

exhibits a discontinuity as a function of the magnetic fie
For vL@w the energy spectrum behaves like a Landau sp
trum. This is illustrated for the noninteracting case (w5V)
in Fig. 2~a! and Fig. 2~b! for N510 electrons, and in Fig
3~a! and Fig. 3~b! for N528 electrons. The insets show th
magnetic susceptibility as a function ofvL .

B. Density in the xz plane

Like the density in thexy plane, the density profile in the
xz plane changes whenever there is a jump in the magn
susceptibility. Figure 4 shows density contour plots for fo
fermions (w5V) for various magnetic fields. The asymm
try of the x andz directions due to the magnetic field alon
thez axis is clearly revealed in the plots. In Fig. 5 the dens
contours for ten fermions (w5V) in the xz plane are illus-
trated.

IV. CONCLUSION AND DISCUSSION

In this paper we have presented analytical results for
density of spin-polarized harmonically interacting fermio
oscillators in a magnetic field, taking the fermion statistics
the particles into account. The approach presented her
valid for any number of electrons and for any temperatu
We concentrated on the ground state density for a numbe

FIG. 4. Contour plots ofNn(x,z)/w for N54 fermions and for
V5w as a function of the scaled coordinatesx/x0 and z/z0 with
x05z051/Aw, measured from the center of the parabolic confin
ment potential, for different values of the magnetic field:~a!
vL /w50.2, ~b! vL /w51.0, ~c! vL /w51.5, and~d! vL /w53.0.
1-7
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FIG. 5. Contour plots ofNn(x,z)/w for N510 fermions and forV5w as a function of the scaled coordinatesx/x0 andz/z0 with x0

5z051/Aw, measured from the center of the parabolic confinement potential for different values of the magnetic field:~a! vL /w50.3, ~b!
vL /w50.5, ~c! vL /w50.7, ~d! vL /w51.2; ~e! vL /w52.0, ~f! vL /w52.5, ~g! vL /w54.0, ~h! vL /w55.0.
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particles ranging from 1 up to 45, although higher parti
numbers can also be treated. The density in thexy as well as
in the xz plane shows a magnetic field dependency tha
governed by the discontinuity in the magnetic susceptibil
Oscillations are present in the density and they are m
pronounced as the number of particles is increased. Th
oscillations are smoothed out and finally disappear with
creasing Larmor frequencyvL . Whenever the magnetic fiel
causes a discontinuity in the magnetic susceptibility, the d
sity profile undergoes a sudden change, thus providin
means for characterizing the parameters of the system
the best of our knowledge, the path integral approach use
this paper is the only method so far that provides this
tailed information on the density for an interacting fermi
system.
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